蓄熱・蓄電

  • このエントリーをはてなブックマークに追加

政治・経済の評論家は大変だ。数年後に正鵠を得たのは誰かと逆評論されることがある。それに比較すれば技術に関してリスクは低いと言えそうだが、さて本当か。意地悪だが手許に5年前にEV車の欠点として冬場の暖房に電気が消耗されるので、暖房には蓄熱剤搭載が必要だとのペーパーを日経テクノロジーに掲載した人がいる。偶々乗り合わせたタクシーがEV車で運転手からの愚痴をネタに蓄熱剤の利用を説いた。執筆者が文系か理系記者だか不明であるが、5年後の今はそうはならなかった。EVは徐々に浸透しているが、始動前充電させながらエアコンを掛けるか、座席ヒーターのみ通電することで対応しているのが現実である。もし蓄熱剤及び蓄熱タンクや付帯設備を搭載すると車重が重くなり、電気容量を食うことが容易に類推できる筈である。材料・設計・デザイナーは軽量化1g当たり価格を意識してミリミリ詰めているので蓄熱の発想はなかった。

しかしながら蓄熱は全く意味がないかと言えば、国家エネルギー政策上は極めて重要である。

即ちエネルギー供給源として石油、天然ガス、石炭、自然(太陽光・風力、地熱)エネルギー、原子力のトータルエネルギーを100とすると実際は35%しか利用されていない。残りの65%は発電所、大規模コンビナートでの熱エネルギーとして損失している。この65%を有効化するには蓄熱できる装置・材料があればと長年研究されている。しかしながら排熱の温度の82%は250℃以下と低いことが障害となっている。蓄熱材と熱交換する時間が長い場合、さらに温度が低下してしまう。そこで伝熱面を機械的制御により蓄熱を高速熱交換する技術開発を東北大が開発している。原理はシンプルで蓄熱している層(A)と熱を受け取る層(B)の界面の総括伝熱係数をコントロールする。東北大方式は(A)(B)からなる2層パイプとして(B)を回転させて界面の総括伝熱係数をコントロールし高速熱伝導性が確認されている。話を単純にすれば将来は発電所で発生する熱を蓄熱ローリーに充填してビルや工場に熱をデリバリーすることが可能である。実に面白いが、2層パイプの表面粗度・寸法精度など高度の成形加工技術を要する。日本の機械加工技術の底力を見せるケースである。

EV車はクルマ自体エコであるが、発電所の炭酸ガスと熱ロス問題は解決しないと完全にエコとは言えない。この高効率蓄電・熱移送方式が実現すればEVのエコに磨きがかかる

さて、カリフォルニアはEVを推進しているが、電源は自然エネルギーが好ましいとしている。ただし天候に左右され変動する。その補填として発電所及び家庭での蓄電池の設定を法制化した。現段階で蓄電池を選択するとなると、リチウムであるが、家庭設置は燃焼危険性があり、そもそもリチウム資源枯渇問題もある。EV車が全体の10%を占める時のリチウム必要量は約6万トンであるが、2013年当時のチリなど資源発掘量は37千トンでEV車使用分だけでも不足が予想されている。中国の中南米の鉱山資源獲得攻勢を強めているのも背景にあり、

リチウム代替の蓄電池がクローズアップされている。

結論を急ごう。リチウム代替候補はバナジウム(VSSB)である。蓄電池には鉛、ニッケル水素、NAS電池と種々あるが、比較表を添付する。バナジウムは資源量に問題なく、繰り返し充填疲労、高速充填の基本性能が確認されている。病院・歯科医等の無停電電源装置(UPS)としても有用。この研究も東北大でなされている。蓄熱・蓄電の両方を攻める東北大に是非とも頑張って実用化への橋渡しを期待するものである。

 (表出典 20181月東北大JST発表資料)

  • このエントリーをはてなブックマークに追加

SNSでもご購読できます。