5Why

自動車完成検査問題に端を発して続々の首脳記者会見。日本のもの作りは大丈夫か?と疑問を多くの人は持ったことは確かだろう。でも極論を言えば完成自動車検査問題は罪が軽い。大凡10万ものパーツからなる自動車を最終的に人が検査できない。法律が現実に置いてきぼりされているようでもあるがソクラテスが言う法は法。

もの作りは上流の素材・加工・組立て・モジュール・組み込みなどの工程を経ている。例えば樹脂素材を例に挙げれば、ナフサ中の硫黄など不純物含有量チェック、ポリオレフィン製造の場合はエチレン、プロピレン中の異性分の分析、触媒組成チェック、触媒保管チェック、重合反応装置材質変化、不活性化ガス成分チェック、重合条件モニタリング、溶融樹脂粘度・発熱状態のチェック、押出機内の圧力・温度モニタリング、ペレット粒サイズ別分級、髭・粉分析、分子量、分子量分布、添加剤配合量チェックの上流工程で製造されて最終の出荷検定項目で合否を判定される。出荷検定数より遙かに多くの工程分析からフィードバックされてスペック幅に入れる製造能力があれば、自動的と言っても良いほどスペックに合格する。自動車部品の多くはこれと類似した工程で製造されている。 

罪が深いのはデーター改ざん。上流からの工程管理精度を向上する努力・投資をせずに競争力が高いと装うことは信頼が基本の仕事の流儀から逸脱している

新幹線N700台座問題。記者会見では設計が粗く、他パーツを取り付ける際に肉厚8mmを1mm研削して肉厚7mmとするまでは許容するとの品質基準があるものの、実際は現場に委任されていて最大3.9mmまで研削した事例もあるとのこと。強度は厚みの3乗に比例するので、この箇所は設計の1/8.7しか強度がないことになる。この会社は新幹線300系の時代から代々担っただけにエッ?と思ったのも事実。当時の現場には設計者と対等に渡り合う叩き上げの熟練技能者が存在し、設計と実際の成形上の不具合調整を議論したであろうが、今はいないのであろうか?と考えてはいけない

「トラブル原因を人のセイにするとトラブルは再現する」前職時代トヨタとの付き合いで学んだポイントである。最終的に研削して寸法合わせしたのは現場。でも合わせざるを得なかったのは何故か?超高張力鋼鈑をコの字形状にプレスし溶接により中空体を製造。その上にパーツを接合する。その間隙調整に研削や肉盛りをしたことが直接原因。しかしその前に、設計者は鋼鈑が超高張力になればなるほどプレス後にバネのように戻るスプリングバックして最終寸法にならないことを計算に入れていただろうか?プレス現場で学習したのであろうか、現場研修させるシステムがあったのだろうか。それをCADの中でどのように設計基準に入れ、肉盛残留応力問題をどのように処理したのか。。。。。組織の問題に置き換えて深く掘り下げる必要があろう。苦しい作業になるがこれを乗り越えると脱皮した企業体になることが期待される。是非トライして欲しい。川崎重工の世の中での役目は誰もが認識している。無くてはならない企業である

15年ほど前、東京で明日のプレゼンの用意をしていた19時頃にトヨタ関連企業から電話。「今から逢えませんか?何時になっても良いから待っている。」 公用に自家用車使用は認められていないが、東名を疾駆し駆けつけた。この企業とは某用途で開発を企画したが、最初の段階で想定クレームとそれに対する5Whyを整理するところから入った。まだ販売していない段階、それも開発をこれから着手する段階にて。これには正直驚いた。一次原因は***で、この更なる原因は****で・・・・の何故?何故を5回繰り返すことでコア部の問題点を明らかにする5Why。噂には聞いていたが、実際は大変な作業である。このとき感心したのは

「トラブル原因を人的要因もあるとした対策案はことごとく拒絶された」ことである。

トラブルを起こさざるを得なかった人的背景要因に組織はどう関係しているのか?を深掘りしない限り5Whyまでは到達しなかった。5Whyまでに到達するまでに何度も脚を運び都度勉強することが続いた。先の東名疾駆は何回目だったか忘れたが、先方との信頼感が5Whyを通じて強化されていくことを実感した。帰路の裾野付近から箱根越えのダラダラ登り坂はアクセル踏む脚力には厳しいなかにも、5Whyの効用を味わえたのは貴重な経験だった

現在の働き方改革云々では威張れる話ではないが、どこかでは必要なんだろうと思う。

CNF(セルロースナノファイバー)

数年前の統計だが国内年間使用材料の数量と容積比データーが手許にある。第1位は石・セメントで15億トン、第2位鉄1.2億トン 第3位が木材・紙の0.45億トンである。因みに4位はプラスチックス0.15億トン、アルミが0.025億トン。重量ではこの順位になるが、例えばプラスチックスの容積比を1とすると鉄は0.9と体積ではプラスチックスが鉄より比率は高い。比重が違うので当然この結果となる。自動車は内外装にはプラスチックス、鉄(鋼鈑)は強度が要求されるホワイトボディに採用され軽量化と車両としての骨格を分担する機能で成立している。今、鋼鈑はより比重の低いアルミから攻勢が掛けられ、鋼鈑・アルミは炭素繊維複合プラスチックスに攻勢を掛けられている。エンジンからEVへのパワートレインが変化すると更に軽量化が要求され、鋼鈑としては強度を表す高張力鋼板は15年前までは780GPa前後だったのが、現在は1700GPaまで改良され、薄肉・少量鋼鈑で対応している。アルミ、プラ、高張力鋼板のせめぎあいは見事である。共に切磋琢磨することで自動車以外の分野にも拡張している。

上記の材料の中で一人沈んでいるのが木材・紙である。重量比、体積比ではおよそプラスチックスの3倍の需要があるものの、人口減少に伴う建築軒数の削減、雑誌・新聞は紙媒体から通信機器に取って代わりつつある。医療関係では電子カルテになり、医療費支精算までラインで繋がり、紙が存在するのは患者番号切符と領収書のみ。さらに手術室等のリアル空間記録も紙では対応できない。そんな影響を直接受けるのが製紙メーカーである。

その製紙メーカーが切り札として開発を進めているのがCNF(セルロースナノファイバー)である。紙の原料であるパルプの繊維1本の太さは10~20ナノ前後で長さは測定できないくらい長い。繊維の長さ/太さ=アスペクト比と表現したとき、プラスチックスと混合した場合、アルペクト比が大きい程、引張り強度、曲げ強度、熱変形温度を改良することができる基本原則がある。炭素繊維複合樹脂材料、ガラス繊維複合樹脂材料、タルクなど無機充填剤複合樹脂材料などはこの原理原則を利用している。

さて、このCNF。アスペクト比はこれらの複合材料に比較すると圧倒して大きい。但し繊維1本、1本を解くことができること(解繊)が前提である。セルロースはご承知のように親水基を分子内に多数あり、相互に水素結合しているので解繊が困難である。そこで化学的修飾して解す(東大磯貝教授プロセス)、または高圧水や機械剪断利用して解す(京都プロセス)など工夫されてCNFとしている。

多くは水溶液として得られる。濃度は1~2%。水溶液の形で利用しているのは化粧品やボールペンのインク滑らかさ改良である。量的に大量消費が見込まれる樹脂に配合するには100%まで濃縮・乾燥する必要があるが、過程中に親水基が再凝集することもあり、かなり厄介である。可能となれば物性は期待できる。

例えば繊維の太さが人間視野波長より細いので透明樹脂に配合しても透明性を維持し、かつ繊維の数が多く、相互に絡みもあることから、樹脂の線膨張係数が小さく、機械的強度が向上する。製紙メーカーとしては樹脂複合材として自動車・航空機の材料になることを期待して中規模プラント建設をした会社がある。原料が針葉樹パルプ以外にも竹由来のCNFもあり、また鳥取県では蟹の殻のキチン・キトサンを原料したもの、愛媛県ではミカンの皮を原料にしたものなど地域特徴をだしたCNFの開発を進めている。蟹由来は医療用にミカン由来はジュース粒の沈降防止などが利用されている。ソフトクリームが夏場でも長時間維持できることを経験した人もあろう。

ここで本命のパルプ由来について果たして目的の自動車・航空機に利用できるか? 言うまでもなく木材は炭酸ガス固定として有為の存在であり、違う目的で再利用できることは大きな意味をもつ、単なる製紙メーカー救済策ではない。17年ほど前、前職時代にナタデココから採取したナノファイバーをアクリルに配合して透明で屈曲できるウエアラブル・ディスプレーを開発した仲間がいた。その途端、ガラスメーカーは薄く屈曲できるガラスを発表した。喰われる方のメーカーは容赦をしない。この時に深追いしなかった理由は価格。この経験から製紙メーカーには現在乾燥CNFが5万円とも言われている価格帯を500円前後まで合理化できることを期待している。是非頑張ってとエールを送る。

CNF説明資料:京都大学生存圏研究所HP http://www.rish.kyoto-u.ac.jp/labm/cnf

蓄熱・蓄電

政治・経済の評論家は大変だ。数年後に正鵠を得たのは誰かと逆評論されることがある。それに比較すれば技術に関してリスクは低いと言えそうだが、さて本当か。意地悪だが手許に5年前にEV車の欠点として冬場の暖房に電気が消耗されるので、暖房には蓄熱剤搭載が必要だとのペーパーを日経テクノロジーに掲載した人がいる。偶々乗り合わせたタクシーがEV車で運転手からの愚痴をネタに蓄熱剤の利用を説いた。執筆者が文系か理系記者だか不明であるが、5年後の今はそうはならなかった。EVは徐々に浸透しているが、始動前充電させながらエアコンを掛けるか、座席ヒーターのみ通電することで対応しているのが現実である。もし蓄熱剤及び蓄熱タンクや付帯設備を搭載すると車重が重くなり、電気容量を食うことが容易に類推できる筈である。材料・設計・デザイナーは軽量化1g当たり価格を意識してミリミリ詰めているので蓄熱の発想はなかった。

しかしながら蓄熱は全く意味がないかと言えば、国家エネルギー政策上は極めて重要である。

即ちエネルギー供給源として石油、天然ガス、石炭、自然(太陽光・風力、地熱)エネルギー、原子力のトータルエネルギーを100とすると実際は35%しか利用されていない。残りの65%は発電所、大規模コンビナートでの熱エネルギーとして損失している。この65%を有効化するには蓄熱できる装置・材料があればと長年研究されている。しかしながら排熱の温度の82%は250℃以下と低いことが障害となっている。蓄熱材と熱交換する時間が長い場合、さらに温度が低下してしまう。そこで伝熱面を機械的制御により蓄熱を高速熱交換する技術開発を東北大が開発している。原理はシンプルで蓄熱している層(A)と熱を受け取る層(B)の界面の総括伝熱係数をコントロールする。東北大方式は(A)(B)からなる2層パイプとして(B)を回転させて界面の総括伝熱係数をコントロールし高速熱伝導性が確認されている。話を単純にすれば将来は発電所で発生する熱を蓄熱ローリーに充填してビルや工場に熱をデリバリーすることが可能である。実に面白いが、2層パイプの表面粗度・寸法精度など高度の成形加工技術を要する。日本の機械加工技術の底力を見せるケースである。

EV車はクルマ自体エコであるが、発電所の炭酸ガスと熱ロス問題は解決しないと完全にエコとは言えない。この高効率蓄電・熱移送方式が実現すればEVのエコに磨きがかかる

さて、カリフォルニアはEVを推進しているが、電源は自然エネルギーが好ましいとしている。ただし天候に左右され変動する。その補填として発電所及び家庭での蓄電池の設定を法制化した。現段階で蓄電池を選択するとなると、リチウムであるが、家庭設置は燃焼危険性があり、そもそもリチウム資源枯渇問題もある。EV車が全体の10%を占める時のリチウム必要量は約6万トンであるが、2013年当時のチリなど資源発掘量は37千トンでEV車使用分だけでも不足が予想されている。中国の中南米の鉱山資源獲得攻勢を強めているのも背景にあり、

リチウム代替の蓄電池がクローズアップされている。

結論を急ごう。リチウム代替候補はバナジウム(VSSB)である。蓄電池には鉛、ニッケル水素、NAS電池と種々あるが、比較表を添付する。バナジウムは資源量に問題なく、繰り返し充填疲労、高速充填の基本性能が確認されている。病院・歯科医等の無停電電源装置(UPS)としても有用。この研究も東北大でなされている。蓄熱・蓄電の両方を攻める東北大に是非とも頑張って実用化への橋渡しを期待するものである。

 (表出典 20181月東北大JST発表資料)

日本の研究・COM

日本の研究・COMは大学・公的研究機関が発表する最新の文献・情報発信のWEBである。

大雑把に我々の税金がどのような研究に投入されているのかリアルでみることもできる。

昨年の研究費及び論文数はピーク時の10%ダウンであり、巷間言われている日本の技術停滞を如実に表わしている。因みに研究費総額6,530億円 論文数81,403件。過去5年間トータルの研究費は3.4兆円。医歯薬関係は8,000億円(内歯関係435億円)となっている。この数字をどうみるか。ご専門の方々のご判断にお任せしたい。

究機関別 推定研究費TOP10

研究機関                                推定研究費          登録課題数

東京大学                                   762.01億円                                                5,231

大阪大学                                   553.24億円                                                3,909

京都大学                                   531.89億円                                                3,889

東北大学                                   303.49億円                                                3,167

慶應義塾大学                             286.92億円                                                1,906

九州大学                                   257.12億円                                                2,701

国立がん研究センター                  236.61億円                                                647

理化学研究所                             214.60億円                                                1,192

東京医科歯科大学                       190.30億円                                                1,710

名古屋大学                                167.00億円                                                2,119

ところで、論文についてアクセスランキングも随時行われており、2週間前までトップを維持していたのはなんと「八つ当たりする魚の発見」である。総合研究大学院大学の院生が同種固体サイズの異なる魚を水槽にいれLサイズがMサイズを攻撃するとMサイズは5秒以内にSサイズに八つ当たりする事例2800を観測、指導教官沓掛講師と共に纏めて発表した。霊長類以外に魚といえども高度な社会的情報処理と意思決定を行っていることを示していると説明している。 なるほど面白い。だが、発見である。社会・心理学分野での貢献が大であろうことを期待はするが、工業会に棲息している我が身としては、折角の科研費を有効に利用して発見から発明への展開できるのか否か興味がある。それともビックデーター、AIを駆使する人物もしくはコンピューターロボットがCDO(Chief Digital Officer)として的確な判断ができるボスとなり、疎い者がイジメの対象になるとでも想像させるのか・・・。

そんなもやもやしていたところ龍谷大と京都大学では舞鶴湾に棲息する15種類の魚について「海に生息する魚種間にはたらく複雑な関係性を捉えることに成功 ~緩い種間関係と種の多様性が生態系を安定化~」を発表。

ポイントとして(原文引用)

  • 非線形力学理論を利用して開発した新しい数理的データ解析手法により、舞鶴湾での過去12年間の生物個体数変動データを分析。
  • 15種の生物の間に働く複雑な関係性(目には見えない力)が刻々と時間変化する様子を捉えることに成功。
  • 生態系の安定化には、出現する生物種が多いことや、種間に及ぼし合う影響が緩やかになることが大きな役割を果たしていることを新たに発見。
  • 生態系観測によって「自然のバランス」の変化を捉える新技術の開発につながると期待

·       

1 本研究の対象となった舞鶴湾の15種の生物と、個体数変動データから明らかになった生物種間の14の関係性(種間相互作用)

·        矢印は影響を与える種から、影響を受ける種に向かって引かれている。色は影響の符号(正負)で、青色()は平均的には相手を増やす作用、赤色()は平均的には相手を減らす作用を表している。

 新い数理論的データ解析により「新技術開発のヒント」になれば発見から発明になる。尚発明の要件とは産業上の利用可能性*新規性*進歩性である。例えば鰻の稚魚がなぜ絶滅するのか、この論文では絶滅しないバランスがある筈だとすれば、何を制御すれば良いのか。この研究によれば絶滅種を回避して共存することが可能であるとして、上記のAI音痴の社員がイジメにあうのではなく、共存への裏方的価値があるとも示唆しており興味深い。

研究の最終ゴールが何を目指して実施しているのか、この「日本の研究.COM」は教えており、オオッと感心するテーマあり、日本も捨てたモノではないと感ずる時もあるが、地方国立大学の1講座予算平均60万円とあっては、この先が思いやられるのも事実。

配水用ポリエチレンパイプ

今年は地球自転速度が低下し赤道が収縮するとの報告がなされている。その結果、プレートの移動変動に伴う地震・噴火などが昨年より頻度が多くなるのではと言われている。そこで今回はライフラインで重要な耐震性水道パイプについて考えてみた

いつのころから水道の蛇口から赤さびが出なくなったのをご存知でしょうか。水道工事予定の回覧板には給水再開時に赤さびがでますとお知らせがあった。今はない。若い人はこんな時代があったなんて知らないだろうが、1970年前は頻繁にあった。水道管が鋳鉄管の表面にエポキシで被覆はされていたとは思うが剥離し、やがて錆が発生した。1970年以後は口径50mm以下の主として家庭用給水用パイプは低密度ポリエチレン性であり錆ないが、時々薄肉円筒状のフィルムが分岐管を閉塞する事故が発生した。パイプの内面が一皮むけしている事故が全国あちこちで発生するに至り、解析と対策が実施された。どうやら殺菌消毒液として僅かに配合されている次亜塩素酸が影響しているようだとして、短時間で結果がでるよう高濃度次亜塩素酸水にポリエチレンのサンプルシートを浸漬するとブリスター(泡)が発生した。ポリエチレンに耐候性改良剤として添加されているカーボンブラックが原因であることが判明した。そこで急遽内面にはカーボンブラックを配合しない内層と外面は耐候性改良のためのカーボンブラックを配合した2層パイプにて切り替えることとした。その後 事故は発生していない。

しかしながら、高濃度次亜塩素酸水に浸漬したポリエチレンシートにブリスター(泡)は発生したが、当初報告されたフィルム状剥離は再現できなかった。急遽の切り替えに勢力が割かれた。筆者は何故発生するのかカーボンブラックが起点だとすると何か理由があるはずだと考えカーボンブラック中の電子スピン濃度と関係することが分かった。この考えは其の他の用途でカーボンブラック配合が必要な樹脂製品に応用することができた。パイプ事故で躓いたがWhy?と考えたことで他に応用できたことは良かった。でも今でも何故剥離フィルムが生成したのか?は考えている。材料屋の直感としてはサイジングダイ通過時の内面剪断問題であろうと想像していた

この事案と前後してカリフォルニア大地震があり、ポリエチレン製のガス管は断層があっても切断事故はなかったことが報告された。ポリエチレンでも中密度リニアーポリエチレンで耐環境応力亀裂性、衝撃強度など優れた材料が選択されていることから国内でも同様材料開発が進み、かつパイプとパイプを接合する装置を開発した。この接合技術は次に大きな役割を果たすことになる。因みに地中埋設のパイプを後で他の土木工事で切断しないように黄色に識別されている

大口径(75~300mm)の配水管については道路埋設されたとき25トントラックの繰り返し荷重に耐えられるように材料は密度の高い高密度ポリエチレンが採用されている。色は青色。高密度化(結晶比率が高い)で剛性など機械的強度は得られる上,ガス管に用いられている中密度ポリエチレンのクリープ強度大きく改善させた.これは,結晶の一部の分子が隣接する結晶に入り込み結晶同士があたかも結合したように分子設計したことと,結晶の大きさ隣接距離のバラツキが無いようにパイプを製造することで欠点が改良されて現在に至っている。高密度ポリエチレンパイプの接続にはガス管接続方式が採用された。実際埋設された地域で東北地方太平洋沖地震があったが、事故率ゼロが報告されている。写真はパイプ敷設場所が垂直方向に断層した場合と水平方向に断層した場合のモデル実験であるが、(震度6程度)の地震では問題がないことが証明されている。現在、100年寿命パイプとして官民学協力して精度アップと標準化を進めている。テストシートの短期評価に加えパイプを敷設して長時間のフィールドテストにより変化をチェックする息の長い検討が山形大学栗山教授を筆頭に配水用ポリエチレンパイプシステム協会が推進している。開発途上国は水道が普及していないが、いずれ普及したときに地震大国で過酷テストに耐えたパイプが推奨されるようにISO標準化作業の中での活躍と企業の支援を期待している

(配水用ポリエチレンパイプシステム協会HPより抜粋;但し、この表7の宮城県・岩手の市町村逆に記載されています)

 

コスメの科学(2)塗る、刺す、そしてセカンド・スキンへ

<クリームなど塗るテクノロジー>

東京にも雪が降った。なかなか融雪しないうちに次の降雪が予報されている。寒いが化粧品業界は熱い戦いが行われている。そこに科学がどう関係しているかみてみよう。

雪の形については有名な北大中谷宇吉郎名誉教授の研究が有名である。不思議に思うのは何故あの多種多様な雪マークになるのだろうか、コップに水を入れると界面張力が作用して丸くなろうとする。それに反してギザギザ分岐の形にはどうしてなるのか長年分からなかった。1977年ノーベル賞を受賞したイリヤ・プリゴジン教授が非平衡系の自己組織化・散逸構造を提唱するまでは。その答えは身近なところにあることを共同研究者の慶応義塾朝倉教授が解き明かし化粧品分野の商品開発に結び付けている。紫外線防止クリームは塗布後と水浴後ではクリームの集合状態が変わる。従来は水浴後に疎らに凝集していたクリームを理論的解析により水泳後でも均一な商品を開発された。(写真はカネボウ・慶応共同研究成果)

この理論が虎やシマウマの縞模様発現と同じだと朝倉教授を話されるが、今でも小生には難解。でも面白い。

 

 

 

 

 

<ヒアルロン酸は塗るからニードルで刺すテクノロジーに>

124日から3日間、幕張メッセで化粧品テクノロジー展が開催された。異分野でのテクノロジー進展に興味がありチェックした。その結果は購買層を反映した、アンチエージング、美肌関連の展示が多く、従来の経験に基づく商品開発(土地特有の植物から抽出成分を配合)から発酵技術を駆使しての新規原料の開発などが目に付いた。特記すべきことは、ヒアルロン酸を皮膚に塗布しても効果がイマイチだとして、皮膚下まで針を差し込みヒアルロン酸やコラーゲンを注入する試みがなされていた。ここで針?とは金属製ではなく、実はヒアルロン酸の結晶体をフィルム面の上に生成させている。ヒアルロン酸の結晶は針になるほどの強度があることに実は知らなかった。この技術はナノインプリントと称する光学フィルムの製造において急成長したテクノロジーであり、液晶テレビ、モバイル、タッチパネルなどでは無反射防止フイルム、指紋が付きにくいフイルムで実用化している。食品ではヨーグルト容器の蓋にはこの技術が応用されている。以前は蓋にヨーグルトが付着していたが、いつの間にか蓋にはつかなくなっている。フイルム、アルミ箔の表面にナノサイズの突起が転写されている。

ナノと今回の化粧品ニードルとは寸法は違うものの、成形法については同類だろうと想像している。写真はコスメディ製薬のパンフから抜粋した。

 

 

<セカンド・スキン>117日の日経によると資生堂は以下の発表を行った。

米オリボ・ラボラトリーズ(マサチューセッツ州)が持つ「セカンド・スキン」と呼ばれる人工皮膚形成技術の特許と関連事業を買収した。買収価格は不明だが数十億円規模とみられる。オリボ社の数人の研究者も資生堂グループに取り込む。セカンド・スキンは肌に特殊な高分子化合物を配合したクリームと専用の乳液を重ねて塗る。すると、人工皮膚が瞬時に形成されて凹凸を補正しシワやたるみを隠せる。 直ぐ外出する用事があるときには便利な「化粧」だと思われる。

コスメの科学

昭和初期の歌手は直立不動。昭和中期では簡単な振り付けとバックダンサー。昭和後期から平成初期ではジャニーズを初めとしてダンスができないと歌手にはなれない。ついに平成30年になると歌手かダンサーのどちらが主役か分からなくなってきた。大阪府立登美丘高校ダンス部のキレッキレッ超ハードバブリーダンスが国内外の話題と高い評判をさらった感がある。あの高校生たちは母親の当時の服を纏い、ケバい化粧でメイクアップしてバブル時代(1986年から約5年間)を彷彿させていた。

でも化粧品は当時の物では無いとTVを観ながら気づいた。メイクアップとメイク落としは当時より大きく変化している。アイシャドウ、口紅、アイライン、ファウンデーションなどメイクアップは汗や飲み物でも落ちない新素材研究が進み、一方メイク落としは何がなんでも落とす機能が要求され研究されている。まるで盾と矛の関係である。最近のメイクアップには汗や水に対して親和性のない(疎水性・撥水性のある)シリコーンやフッ素系材料が配合されている。顔料はメイクアップ中のオイルに分散して光沢などを強化するために顔料表面を疎水性コーティングがなされている。なおさら従来のメイク落としでは取れない

小生はこの分野は素人だが面白いので文献を捜していたら山形大学の野々村美宗教授の分かり易いペーパーが見つかった(化学vol73.No.1 2018)。特にメイク落としの記載がなされている。結論から言えば界面活性剤の種類と形態の進歩で、シリコーンやフッ素系配合がなされていても拭き取ることができる。

身近な界面活性剤として食器洗剤、洗濯洗剤などがあるが、洗剤メーカーのCMでよく観るように界面活性剤が汚れの表面に付着して、やがて汚れを界面活性剤の内部(ミセル)に取り込むメカニズムになっている。(図-1)

 

最近のメイクアップを除去するには。まず界面活性剤成分中のオイル量を高めシリコーンやフッ素系成分が多く取り込まれるように形態にも工夫がなされている。その形態として界面活性剤が液晶のように揃っている(液晶型メイク落とし)か、オイル成分と親水成分の両成分が同時に存在する形態(バイコンティニュアス型メイク落とし)を利用している。そのため、少量の水、泡で拭き落とすことが可能となった。(図-2)

 

界面活性剤の世界に疎い小生にとって液晶型、バイコンティニュアス型があるとは知らなかった。しかしながら、高分子材料の高付加価値化手段としてはポリマーアロイがあり、通常利用される手法である。バイコンティニュアスとは言わずスピノーダル型と表現している。材料設計の考え方としては似ていると思われる――――――――――――――――――――――――――――――――――

(参考)界面活性剤 特徴を超要約すると以下の通り。

アニオン系          石鹸、合成洗剤 →植物由来原料へ転換

カチオン系          生体がマイナス帯電なのでプラス帯電のカチオンは毛髪リンスなどに利用                         抗菌性もあるので院内感染防止にも利用         

両性                  アニオンもカチオンにもなれる 広いpHで利用可能。洗顔、シャンプーなど

ノニオン              どんなタイプとも一緒に利用できる。化粧品、食品など

シリコーン系        サラサラ化粧品を支える

フッ素系              水にも油にも強い→歯の成分ヒドロキシアパタイトの表面に吸着するので

            撥水・撥油性を利用した歯科向けに展開

――――――――――――――――――――――――――――――――――

                                     (日刊工業新聞 界面活性剤 抜粋)

モーターサイクル2 (ヘルメット)

年末の紅白では「欅坂」、年始の駅伝では「襷」が話題に。木偏に衣偏、右側が書けなくても意味は分かる。 買い物ついでに隣接するオートショップを覗いたところ、モーターツーリングに欠かせないヘルメットがずら~っと並んでいた。工事用ヘルメットと違い、ド派手でキレッキレッデザインは風を切って走行する風景との鮮やかなコントラストを描きだすことで似合うのだろうと想像した。ただ素人にとっては難解なワードVAS-V、XDF・・・オンパレード。日々進化するテクノロジーを表現しているとは思うが具体的に何だろう?と陳列台の前で考えてしまった。WEBで調べるとVASとは「新シールドシステム」だとか。漢字世代の当人は可変シールドシステムなんだろうなぁと解釈したが、それならそうと書いてはどうか?と瞬間思ったが、ヘルメットの日本製品は世界から信頼を得ており、海外需要が多い事情もあるのだろう

さて、ヘルメットにはPSCマーク(業者特定試験自主検査基準)やSGマーク(製品安全協会認定)などが添付されている。前提としてJIS規格に合格する必要がある。ヘルメット特有の規格としてSNELL規格もある。 どの規格が厳しいのかは専門家にお任せするが、小生の自動車部材開発時の苦い経験から言えるのは衝撃モードが違えば歪み速度が異なるので単純な比較はできない。高衝撃装置で高い数字を叩きだした材料が数値の低かった材料に実用テスト評価では逆転したことがあった。検証ではある想定事故での破壊衝撃モードが異なっていたのである。解析を通じた評価法の開発も重要である

ヘルメットの構造についてはYouTubeで新井製作所工場見学が公開されている。これによるとガラス繊維の不織布、ガラス繊維織物、ガラス繊維を特定方向に配列したシート、及び樹脂製ネットなど10~12種類を積層して型に入れ熱硬化性液体(2液混合)を注入する工程が紹介されている。歯科技工の方なら、注型時の泡の問題は?と気になるところだが、そこは公開されていないが脱泡工程があると想像。 人工衛星の太陽光パネルの成形では炭素繊維に熱硬化性樹脂液体を注入するがJAXAでは泡問題を解決するために製品サイズより大きめの樹脂フィルムで包装し真空ポンプで脱泡する工程を設けている。歯科技工における石膏の真空撹拌とバイブレーター処理と類似している。注型後は加熱重合により複合帽体ができあがる。いわゆるFRPFiber Reinforced Plastic)で小型船舶の製造に利用されている

ガラス繊維は種類によりけりで強度に違いはあるが、影響が大きいのは繊維径である。一般工業品での好適に利用するガラス繊維の直径は13~20ミクロンである。ガラス繊維の表面は樹脂との濡れ性を改良するためのカップリング剤処理がなされている。ガラス繊維を平織り、綾織りと衣類用生地と同じように織ることができる。ガラス繊維の径を4~6ミクロンの極細繊維で織ったものが東京ドームの天井に採用されているのは有名である。ドーム内の圧力変動があっても繊維が折れないほどしなやかである。一般工業品への適用を試みたことがあるが、極細ガラス繊維は非常に高いので断念した。

2040には自動車のボディが鋼鈑から熱可塑性炭素繊維複合体(CFRTP)に置き換わると予想されており、これにつれて炭素繊維の低価格化が進めばヘルメット帽体も軽量なCFRTPに置き換わる可能性はあるかも知れない。CFRP製ヘルメットは先のSAMPE(先端複合材料展)で発表があり一部で市販開始されたが、将来メイン材料になる可能性があるか、それとも製紙メーカーが必死で開発を進めているセルロースナノファイバー複合材料になるのか動向が注目される。

(写真はYou tubeより抜粋 各種部品、中間帽体、熱硬化樹脂注入効果後の帽体) 

殺菌剤・二酸化塩素が大化け?

ALWAYS三丁目の映画は東京タワー建設当時を舞台にしている。当時の町医院の待合室にはかすかな塩素臭が漂っていた。子供心にも清潔感・安心感のようなものがあった。あれは殺菌処理のための次亜塩素酸と推察、先生は手もそれで洗っていたように記憶がある。

冬の季節になると10年ほど前からTVのCMで消臭・殺菌剤として二酸化塩素含有ジェルなどの商品をみることがある。当初はインフルエンザ対策を謳っていたが薬事法抵触もありトーンを下げているようだ。二酸化塩素は不安定な化合物で塩素と酸素に分解する。この塩素は酸化剤として強く菌のDNAを破壊するのだろう。臭気も強いので健康に本当に良いの?と特に幼児をもつ家庭で疑問をもたれる方から公的衛生機関への問い合わせが今でもあるようだ。医院や家庭で二酸化塩素に代わりそうな安心な装置については末尾に紹介する

前置きが長くなったが、今回は二酸化塩素が化学合成の歴史に大きな働きをしたことを記載する。つい先日、大阪大学の大久保敬教授らの研究グループは、常温・常圧で空気とメタンからメタノールを作り出すことに世界で初めて成功したと発表。この反応に重要な働きをしたのが二酸化塩素。酸化剤として作用。図-1参照。解説を発表資料から抜粋する

 「メタンは化学的に極めて安定な物質なので、メタンを酸化するためには、非常に強力な酸化剤を必要とします。しかし、メタンに比べ生成物のメタノールの方がより簡単に酸化されるためにメタノールとして取り出すことができず、メタノールが酸化された二酸化炭素や一酸化炭素に速やかに変換されてしまいます。そこで本研究では、具体的には、図1に示すようなフルオラス溶媒と水の二相反応系を考案しました。このフルオラス溶媒は、メタンや酸素などのガスを多く溶かす性質を持っています。反応の手順は、まず、水中では亜塩素酸ソーダと酸が反応して二酸化塩素が発生します。その後、二酸化塩素はフルオラス溶媒に溶け易いのでここでメタンと反応します。生成物のメタノールやギ酸は、フルオラス溶媒に溶けにくく、速やかに水中に移動するので、これらが二酸化炭素などへ酸化されることなく生成物は次々に水中に濃縮される。」

産業界としてはノーベル賞級の発明だと思う。日本周辺の深海にあるメタンハイドレードを合理的方法で取り出すことができると、この反応を利用してエネルギー大国への変換やメタノール原料の燃料電池車の競争力が高くなることが予想される。時あたかも予算編成のタイミング、大型テーマとして予算を付けて欲しいものだ

一方、臭気を素早く分解し、ノロウイルスなどの院内感染源も死滅させる装置の開発がなされている。こちらは光と酸化チタンの組み合わせで、既に建造物の防汚、部屋の臭気対策として活躍しているが、最近になって酸化チタン成分の何が効果をもたらしているのか?の解析を通してより効果のある酸化チタンと最終製品への開発がなされた。効能については富山大学ウイルス学専門白木教授により確認されている。(図-2)

小生の研究仲間がこのプロセス開発に係わったことで関心がある。 歯科医院内のクリーン、技工所でのアクリルシロップ重合なので臭気対策にも有効だと思われる

(補注フルオラスと は、「親フルオロカーボン性」の意味で、高度にフッ素化されているゆえ、水や有機溶媒 とも混和せず、また、低表面エネルギー、耐熱性、光学あるいは電気的特性を有する。ダイキンHPより

秋から始めた自由気ままなブログをご愛読頂き有り難うございます。本年は3Dプリンターが本格実用化の扉を開けたと言えます。歯科技工はその先頭を走っています。コスモサインは皆様とご一緒に2018年も歯科技工IOTツーリングできることを期待しています。

モーターサイクル(その1)

俳句プレバトルで千原ジュニアが昇格した句

750CC(ナナハン)の タンクにしがみつく 寒夜」

ライダーならずとも上手いなぁ~と感心する。ライダースーツ、手袋、フルフェイスヘルメットで身を纏っていても寒い。タンクを介してのエンジンの温もりは冬の季節はありがたいと。でも、単にそれだけではなく、しがみつく姿勢は快調なツーリングを支えてくれた愛車への例えば乗馬に労をねぎらう様をも想像させる

二輪は排気ガス、騒音規制、及び需要の減退もあり中型・小型の生産中止が相次いだが、その一方でヤマハは前方2輪のLMW(コーナリング時にフロント二輪と車体を同調させ、リーンさせる機能)を、ホンダは、ライダーがバランスを保たなくても自立する二輪車「Honda Riding Assist-e」を発表した。渋滞や信号での発進・停止時など、低速走行時でもマシン自体がバランスを保ち、「倒れないバイク」でライダーの負担を軽減するという。いずれも、新規ユーザーが参入し易いことを意図しているのだろう

カワサキは人気のNinjaシリーズを発展させ300馬力モデルを開発しBMWを追い抜いた。カワサキは航空機エンジン技術を有しているが、BMWは自動車・二輪の前身が航空機エンジン生産しておりその共通点が面白い

カワサキ以外の二輪メーカーは自動車併産にシフトしたが、二輪ライフ・スピリッツを四輪に活かしているように感ずるのは小生だけではないだろう。ヤマハは長年エンジンをトヨタグループに供給して四輪は主に特殊作業用に限定していたが、先の東京モーターショーでは二輪ライフテイストタップリのSUVを発表し、二輪とSUVを結合すると新しいカーライフが提供できることを提案。二輪ライダーも共感すると思われる

カワサキの300馬力、時速320キロを必要とするライダーはそう多くはいないが、その技術への憧れを持たせるには充分である。カワサキスーパージャージャー部品のインペラーは13万回/分の超高速で回転する。川崎重工の航空機エンジン開発部隊が設計した遠心式スーパーチャージャーに組み込まれている。またインペラーと形状が類似している船舶のスクリューを設計製造している同社船舶部隊とのコラボもなされたと聞く。外観風貌は従来のNinjaと変わらないので乗ってみて驚くライダーをバイクが見ているように思える。乗りこなすスキルのないジョッキーを馬の方が値踏みするように

尚、インペラーの製造は金属ブロックからの5軸~6軸切削マシンであるが、将来さらに形状が複雑になると3Dプリンターが登場するのではないかと考える。 製品設計は「成形加工可能技術」を前提になされる。「高速で流体を抵抗なく移送する羽根」を前提にして、高度数学を利用したトポロジー学から得られる解は現状の成形加工技術では不可能な形状となることもあり得る。

その場合、3Dプリンターが活躍すると予想する。 

写真  カワサキZ900RS(東京モーターショー)及びインペラー