モーターサイクル2 (ヘルメット)

年末の紅白では「欅坂」、年始の駅伝では「襷」が話題に。木偏に衣偏、右側が書けなくても意味は分かる。 買い物ついでに隣接するオートショップを覗いたところ、モーターツーリングに欠かせないヘルメットがずら~っと並んでいた。工事用ヘルメットと違い、ド派手でキレッキレッデザインは風を切って走行する風景との鮮やかなコントラストを描きだすことで似合うのだろうと想像した。ただ素人にとっては難解なワードVAS-V、XDF・・・オンパレード。日々進化するテクノロジーを表現しているとは思うが具体的に何だろう?と陳列台の前で考えてしまった。WEBで調べるとVASとは「新シールドシステム」だとか。漢字世代の当人は可変シールドシステムなんだろうなぁと解釈したが、それならそうと書いてはどうか?と瞬間思ったが、ヘルメットの日本製品は世界から信頼を得ており、海外需要が多い事情もあるのだろう

さて、ヘルメットにはPSCマーク(業者特定試験自主検査基準)やSGマーク(製品安全協会認定)などが添付されている。前提としてJIS規格に合格する必要がある。ヘルメット特有の規格としてSNELL規格もある。 どの規格が厳しいのかは専門家にお任せするが、小生の自動車部材開発時の苦い経験から言えるのは衝撃モードが違えば歪み速度が異なるので単純な比較はできない。高衝撃装置で高い数字を叩きだした材料が数値の低かった材料に実用テスト評価では逆転したことがあった。検証ではある想定事故での破壊衝撃モードが異なっていたのである。解析を通じた評価法の開発も重要である

ヘルメットの構造についてはYouTubeで新井製作所工場見学が公開されている。これによるとガラス繊維の不織布、ガラス繊維織物、ガラス繊維を特定方向に配列したシート、及び樹脂製ネットなど10~12種類を積層して型に入れ熱硬化性液体(2液混合)を注入する工程が紹介されている。歯科技工の方なら、注型時の泡の問題は?と気になるところだが、そこは公開されていないが脱泡工程があると想像。 人工衛星の太陽光パネルの成形では炭素繊維に熱硬化性樹脂液体を注入するがJAXAでは泡問題を解決するために製品サイズより大きめの樹脂フィルムで包装し真空ポンプで脱泡する工程を設けている。歯科技工における石膏の真空撹拌とバイブレーター処理と類似している。注型後は加熱重合により複合帽体ができあがる。いわゆるFRPFiber Reinforced Plastic)で小型船舶の製造に利用されている

ガラス繊維は種類によりけりで強度に違いはあるが、影響が大きいのは繊維径である。一般工業品での好適に利用するガラス繊維の直径は13~20ミクロンである。ガラス繊維の表面は樹脂との濡れ性を改良するためのカップリング剤処理がなされている。ガラス繊維を平織り、綾織りと衣類用生地と同じように織ることができる。ガラス繊維の径を4~6ミクロンの極細繊維で織ったものが東京ドームの天井に採用されているのは有名である。ドーム内の圧力変動があっても繊維が折れないほどしなやかである。一般工業品への適用を試みたことがあるが、極細ガラス繊維は非常に高いので断念した。

2040には自動車のボディが鋼鈑から熱可塑性炭素繊維複合体(CFRTP)に置き換わると予想されており、これにつれて炭素繊維の低価格化が進めばヘルメット帽体も軽量なCFRTPに置き換わる可能性はあるかも知れない。CFRP製ヘルメットは先のSAMPE(先端複合材料展)で発表があり一部で市販開始されたが、将来メイン材料になる可能性があるか、それとも製紙メーカーが必死で開発を進めているセルロースナノファイバー複合材料になるのか動向が注目される。

(写真はYou tubeより抜粋 各種部品、中間帽体、熱硬化樹脂注入効果後の帽体) 

殺菌剤・二酸化塩素が大化け?

ALWAYS三丁目の映画は東京タワー建設当時を舞台にしている。当時の町医院の待合室にはかすかな塩素臭が漂っていた。子供心にも清潔感・安心感のようなものがあった。あれは殺菌処理のための次亜塩素酸と推察、先生は手もそれで洗っていたように記憶がある。

冬の季節になると10年ほど前からTVのCMで消臭・殺菌剤として二酸化塩素含有ジェルなどの商品をみることがある。当初はインフルエンザ対策を謳っていたが薬事法抵触もありトーンを下げているようだ。二酸化塩素は不安定な化合物で塩素と酸素に分解する。この塩素は酸化剤として強く菌のDNAを破壊するのだろう。臭気も強いので健康に本当に良いの?と特に幼児をもつ家庭で疑問をもたれる方から公的衛生機関への問い合わせが今でもあるようだ。医院や家庭で二酸化塩素に代わりそうな安心な装置については末尾に紹介する

前置きが長くなったが、今回は二酸化塩素が化学合成の歴史に大きな働きをしたことを記載する。つい先日、大阪大学の大久保敬教授らの研究グループは、常温・常圧で空気とメタンからメタノールを作り出すことに世界で初めて成功したと発表。この反応に重要な働きをしたのが二酸化塩素。酸化剤として作用。図-1参照。解説を発表資料から抜粋する

 「メタンは化学的に極めて安定な物質なので、メタンを酸化するためには、非常に強力な酸化剤を必要とします。しかし、メタンに比べ生成物のメタノールの方がより簡単に酸化されるためにメタノールとして取り出すことができず、メタノールが酸化された二酸化炭素や一酸化炭素に速やかに変換されてしまいます。そこで本研究では、具体的には、図1に示すようなフルオラス溶媒と水の二相反応系を考案しました。このフルオラス溶媒は、メタンや酸素などのガスを多く溶かす性質を持っています。反応の手順は、まず、水中では亜塩素酸ソーダと酸が反応して二酸化塩素が発生します。その後、二酸化塩素はフルオラス溶媒に溶け易いのでここでメタンと反応します。生成物のメタノールやギ酸は、フルオラス溶媒に溶けにくく、速やかに水中に移動するので、これらが二酸化炭素などへ酸化されることなく生成物は次々に水中に濃縮される。」

産業界としてはノーベル賞級の発明だと思う。日本周辺の深海にあるメタンハイドレードを合理的方法で取り出すことができると、この反応を利用してエネルギー大国への変換やメタノール原料の燃料電池車の競争力が高くなることが予想される。時あたかも予算編成のタイミング、大型テーマとして予算を付けて欲しいものだ

一方、臭気を素早く分解し、ノロウイルスなどの院内感染源も死滅させる装置の開発がなされている。こちらは光と酸化チタンの組み合わせで、既に建造物の防汚、部屋の臭気対策として活躍しているが、最近になって酸化チタン成分の何が効果をもたらしているのか?の解析を通してより効果のある酸化チタンと最終製品への開発がなされた。効能については富山大学ウイルス学専門白木教授により確認されている。(図-2)

小生の研究仲間がこのプロセス開発に係わったことで関心がある。 歯科医院内のクリーン、技工所でのアクリルシロップ重合なので臭気対策にも有効だと思われる

(補注フルオラスと は、「親フルオロカーボン性」の意味で、高度にフッ素化されているゆえ、水や有機溶媒 とも混和せず、また、低表面エネルギー、耐熱性、光学あるいは電気的特性を有する。ダイキンHPより

秋から始めた自由気ままなブログをご愛読頂き有り難うございます。本年は3Dプリンターが本格実用化の扉を開けたと言えます。歯科技工はその先頭を走っています。コスモサインは皆様とご一緒に2018年も歯科技工IOTツーリングできることを期待しています。

モーターサイクル(その1)

俳句プレバトルで千原ジュニアが昇格した句

750CC(ナナハン)の タンクにしがみつく 寒夜」

ライダーならずとも上手いなぁ~と感心する。ライダースーツ、手袋、フルフェイスヘルメットで身を纏っていても寒い。タンクを介してのエンジンの温もりは冬の季節はありがたいと。でも、単にそれだけではなく、しがみつく姿勢は快調なツーリングを支えてくれた愛車への例えば乗馬に労をねぎらう様をも想像させる

二輪は排気ガス、騒音規制、及び需要の減退もあり中型・小型の生産中止が相次いだが、その一方でヤマハは前方2輪のLMW(コーナリング時にフロント二輪と車体を同調させ、リーンさせる機能)を、ホンダは、ライダーがバランスを保たなくても自立する二輪車「Honda Riding Assist-e」を発表した。渋滞や信号での発進・停止時など、低速走行時でもマシン自体がバランスを保ち、「倒れないバイク」でライダーの負担を軽減するという。いずれも、新規ユーザーが参入し易いことを意図しているのだろう

カワサキは人気のNinjaシリーズを発展させ300馬力モデルを開発しBMWを追い抜いた。カワサキは航空機エンジン技術を有しているが、BMWは自動車・二輪の前身が航空機エンジン生産しておりその共通点が面白い

カワサキ以外の二輪メーカーは自動車併産にシフトしたが、二輪ライフ・スピリッツを四輪に活かしているように感ずるのは小生だけではないだろう。ヤマハは長年エンジンをトヨタグループに供給して四輪は主に特殊作業用に限定していたが、先の東京モーターショーでは二輪ライフテイストタップリのSUVを発表し、二輪とSUVを結合すると新しいカーライフが提供できることを提案。二輪ライダーも共感すると思われる

カワサキの300馬力、時速320キロを必要とするライダーはそう多くはいないが、その技術への憧れを持たせるには充分である。カワサキスーパージャージャー部品のインペラーは13万回/分の超高速で回転する。川崎重工の航空機エンジン開発部隊が設計した遠心式スーパーチャージャーに組み込まれている。またインペラーと形状が類似している船舶のスクリューを設計製造している同社船舶部隊とのコラボもなされたと聞く。外観風貌は従来のNinjaと変わらないので乗ってみて驚くライダーをバイクが見ているように思える。乗りこなすスキルのないジョッキーを馬の方が値踏みするように

尚、インペラーの製造は金属ブロックからの5軸~6軸切削マシンであるが、将来さらに形状が複雑になると3Dプリンターが登場するのではないかと考える。 製品設計は「成形加工可能技術」を前提になされる。「高速で流体を抵抗なく移送する羽根」を前提にして、高度数学を利用したトポロジー学から得られる解は現状の成形加工技術では不可能な形状となることもあり得る。

その場合、3Dプリンターが活躍すると予想する。 

写真  カワサキZ900RS(東京モーターショー)及びインペラー

樹脂価格 ナフサリンクとシェールガス

直近の樹脂関係ビックニュースは東レがトヨタなどに自動車用材料(ナイロン、ポリフェニレンサルファイド)の価格をナフサリンクから外すよう異議申し立てをしたことである。ナフサとは原油を熱分解して採れる成分で石油化学はこれからエチレン、プロピレン、ブタン・・・のアルキル炭化水素類とベンゼン、キシレンなど芳香族類が一定の割合で精製分取している。一定の割合で生成するので芳香族化合物のみ生産することはできず、エチレンやプロピレン由来の樹脂や化成品を生産する関係にある。自動車で最も多く採用されている樹脂はプロピレンを出発原料とするポリプロであり、ほぼ価格はナフサの価格にリンクするだろうとトヨタなど自動車メーカーは世界の原油価格、ナフサ価格から樹脂価格を算出した数値で樹脂メーカーと交渉し値決めがされてきた。ところが2005年前後から米国南部を中心としてメタン・エタンが主成分で芳香族化合物を含有しないシェールガスの採掘が活発化しこれを原料とするポリエチレン、ポリプロピレンの大型プラントが順次立ち上がったこと、及び、ナフサと同成分の燃料用名称ガソリンの需要減退もありナフサ価格は低く抑えられている状態にある

一方、東レが異議申し立てした材料は芳香族化合物(脚注分子式参照)を原料とする樹脂であり、ナフサ原料からしか合成できない。東レにすれば芳香族化合物の量は増えず値上がりし、樹脂の価格は低く設定され26年間の我慢も限界に来たとセンセーショナルな見出しの新聞記事。ナイロンやポリフェニレンサルファイドの製造工程が長いので合理化にも限度があるのだろうと思われる。芳香族化合物由来の樹脂にはポリスチレン、ABS、ポリエステル、エポキシ、熱硬化性樹脂などあり機能性が余程評価されないと採算が合わない部類に入る。逆に余程の機能性向上開発がなされトヨタグループが採用した場合は開発費も考慮した値決めがなされるので二番煎じ技術は考慮対象外、一番で無ければ苦しい

ここで歯科材料として気になるのはアクリル樹脂であるアクリルモノマーの製造法を見てみよう。古典的製造法としてACH法(原料はアセトン、青酸、メタノール)戦前は化学チェーンの中で副生成物を利用して合成。次に登場したのが炭素数4のブタン・ブチレンを直接酸化する合成法(C4法)である。国内アクリルメーカーはACH法と直酸法を採用している。ところが2008年には三菱ケミカルがエチレン、メタノールから合成する方法を開発し大型プラントが稼働させた。シェールガス由来のエチレンでも対応できることからコスト競争力がある。歯科材料は工業用途よりボリュームは小さいが、光重合特性や高強度・高靱性など機能性のあるアクリル誘導体の合成能力がより強く求められる。世界の40%シェアを有する三菱ケミカルに対してクラレ、旭化成、三井化学、住友化学、三菱ガス化学等がどのような展開をするか注目される

(参考)シェールガス(頁岩の層の中に閉じ込められたガス)地上から深さ2000~3000mまで掘削し頁岩に到達すると先端ノズルが水平方向に曲り掘削を3000m続ける。次に界面活性剤を含む水を注入し頁岩層を水圧破砕してガスを回収する。掘削パイプはシームレス管、ドリルの先端は摩耗が激しいのでカーボンナノチューブ複合材が適用されている。また当初は600種類に及ぶ界面活性剤の混合品が利用されていたが、掘削地域の土壌汚染が問題となり、現在は使用後バイオ分解する材料が利用されている。いずれも日本のメーカーが活躍している。

シルクとPETボトル

横浜にはシルクにちなんだ博物館や倉庫があり八王子や関東を中心とする生糸生産地からこの地に運ばれ欧米に出荷されていた歴史的名残がある。シルクは蚕が口から蛋白質のフィブロインを糸状に吐き出し繭となり、それを解いて何本かを束ねた撚糸としている。材料屋として興味があるのは強度、しなやか、光沢及び吸湿性があり肌にも良いのは何故だろうか?である。蛋白質フィブロインは天然高分子だから蛋白質ユニットが幾つか連結した形になっているが、分子量はなんと37万と極めて高いのに驚く。合成高分子で我々お馴染みのあるのはスーパーに置いてある極薄ポリエチレンフィルムであるが、その分子量は50万である(測定法が異なるので一概に比較はできないので、大まかに見て)。とするとシルクが強度を発現するにはもう一つの要因がある。蚕が口から糸を吐き出すときに体を捻って口を振って糸を延伸しながら吐き出していることを見つけた人がいる。合成高分子の繊維製造でも延伸により強度を発現させているが、蚕は「延伸」「強度」などつゆ知らず押出―延伸―繭成形を自然に行っていることに驚く。繭から長さ1300mの糸切れなく連続繊維が取れることも驚きである。

現在は繊維に限らず包装材料の多くはPET、ポリプロピレン、ナイロンなどを延伸して薄肉・強度・透明・ガスバリヤー性能を満足させている。その一つがPETボトル成形にみることができる。原料はポリエチレンテレフタレート(略PET)で主用途は繊維。全体の1割程度がPETボトル。分子量(極限溶液粘度法:相対的にご判断下さい)は、0.550.7の繊維用に対してボトル用は1.2と非常に高い。以前は直接1.2まで重合することができないので0.6粘度品を連結(固相重合)して1.2としていたが、最近になり触媒や工程の改良で直接重合できるようになった。PETボトルの成形のスタートは試験管と類似のプリフォームを成形するところから始まる。

1)原料メーカープリフォーム成形→ボトル成形業者が購入し加熱成形→飲料メーカー

2)ボトル成形業者が内製でプリフォーム成形しボトル成形→飲料メーカー

3)飲料メーカーが一貫成形―殺菌―飲料充填

この工程の中で強度と透明性はプリフォームを延伸することがポイントである。

参考資料はボトル成形機メーカー(青木固研究所)の資料を抜粋した。

乾燥されたPETペレットを射出成形してプリフォームを成形(ボトルの底に射出したときの跡がある)、成形温度が冷えないうちにボトルの内部に延伸棒でプリフォームを垂直方向に延ばし、同時に空気圧力で横方向(円周方向)に延伸すると垂直・横方向の2方向に材料は延伸され強度と透明性が確保できる仕組みである。この装置では2)3)が可能。

PETボトルに高温注意とあるのは、延伸したときの温度以上のモノを詰めると(樹脂は延伸されていた記憶を思い出して)戻ろうとするからである。高温充填向けには耐熱材料との複合化がなされている。

最後に、繭から織物向け繊維を取るときに繭の毛羽をとる必要があるが、これが保湿効果や加齢臭対策になるとして今や引っ張りだこ状態。繭を原料とする用途はこれからも広がるだろうが、肝心の桑畑が課題。デジタルカメラ登場でネガフィルムカメラが完全衰退すると思いきやインスタグラムの急進で増産している現象など面白いこの頃である。

ガソリンタンクの樹脂化

ガソリンスタンドで久々の遠出のため満タンお願いしたところ、途中でスタンド店員が怪訝そうな顔で「このクルマ大丈夫ですか?漏れていませんか?」と聞いてくる。メーターは60リッターを超えている。そう言えば何十年前のドッキリTVで軽自動車のタンクを大型に改造してスタンド店員を驚かす番組があったことを瞬間思い出した。

最近のクルマはエンジンのダウンサイジングに伴う燃費向上やハイブリッド車の浸透もありCクラス車ではタンク容量は45リッター前後になっている。それでも普通はガソリン継ぎ足しなので、60リッター給油はこの店員からみると異常に映ったのであろう。

 

40年前まではタンクは金属製で給油の度にタンク内防錆剤はいかがですか?と迫られていたものである。今は樹脂製であるがその理由はもちろん防錆剤不要が原因ではない。クルマ内でのタンクの設置場所が金属製に比べて自由度があり、居住空間やラゲッジルームが広く取られるデザインメリットが大きい。その上、安全性も高いと書くと金属に比べて樹脂が安全??とそれこそ納得しない人がいてもおかしくはない。40数年前はその{常識}と格闘していたのだ。樹脂製にすると複雑な形状にできるので、座席、ラゲッジ内のスペアタイヤなどの隙間の空間に設置することもできる。ランドクルーザーではフロアに乗せるのではなく、路上からの石跳ねにも耐える強度があるので、フロアの一部としてタンク露出の設計をすることがある。

当初は樹脂製のタンクといえば灯油缶みたいなモノをクルマに搭載するのか?と言われたが、フォードが樹脂製タンクの開発を始めると情勢は徐々に変化して、金属製と樹脂製を冷静に比較し始めた。金属はガソリン透過性が小さいが樹脂は透過し易い、衝撃強度は樹脂製が高いことを樹脂専門家は理解していても、金属の「なんとなく安心感」を消費者がもっているだけに容易には受け入れられない。

そこで樹脂製タンクにするには第一にガソリン透過性を改善すること。第二にタンクとしての衝撃が高いことを証明することであった。米国では高密度ポリエチレン中空成形のタンク内面をフッ素処理やSO3など化学処理する実証試験が進んでいたが、日本勢は燃料透過性が低い材料をサンドイッチすることに注力した。当初はナイロンを検討し、現在はEVOH(エチレンビニルアルコール)に切り替えポリエチレンとの溶着性改良のための接着性材料をも開発し、合計3種5層~7層構造のタンクにした。現在はこれがグローバルスタンダードになっている。次に衝撃強度に対するタンクメーカーや消費者への安心感対策である。ガソリンの代わりにエチレングリコールを満タンにして極寒地の衝突を想定してー30℃に冷却して3階建物の屋上から鉄板を敷いた地表に落下したところ、破壊せず2階付近まで戻ってきたことで充分な強度があることで受け入れられた。昨日のことのように思い出す。そのガソリンタンク。今度はEV化の動向の中でまな板の鯉状態にある。トータルで見たLCA(素原料発掘―精練・精製―輸送―成形―組立ー使用時各工程での発生する炭酸ガストータルの環境負荷アセスメント)ではガソリン利用車は行き残る可能性が高いと考える。小型化かもしくは食品包装のようなフィルム状になってクルマのピラー(柱)内蔵になるかもしれないが商品発想は継承されるであろう。

尚、医療材料・製品についても機能別の多層化があるかもしれないとの期待を持っている。

 

写真は日本ポリエチレン資料ガソリンタンク(ポリアセタール製燃料ポンプ内蔵)

パワーデバイス

パソコン作業を中断するときスリープにするか終了するか悩ましい時がある。パソコンへの負担は立ち上げ回数によると漠然と思っているが、国の電力キャパとの関係まで正直考えなかった。今後益々増加する通信量の消費電力に対するソリューション例を考える

通信ネットワークの通信量は総務省20178月統計資料によれば対前年39%の増加と驚異的な数字が報告されている。今後通信動画の高細緻化が進めば通信ネットワーク容量も現在の1000倍必要となり、その時のルーター消費電力は2030年には総発電量11,000億KWを遙かに超えると予想されている。モバイル、パソコンなど個々の機器の消費電力は小さいと思っていただけに一般消費者としては意外である。

自動車自動走行レベル2でも相当コネクトが進んでおり、レベル3になると飛躍的に増加すると予想される。また遠隔地医療のための精緻画面電送システムの充実も要求されると予想される。

現在のネット利用の時間帯は21時~23時にピークがあり、土日に集中しているとの総務省資料がある。 一方でEV車の割合が高くなる機運にあるが、素直に読めばEV車に充電する時間・日と重なることから①発電所増設+休眠発電所再稼働 ②ネットワークアーキテクチャー抜本構築 ③パワーデバイス開発 などを実行しないと社会インフラに重大な危機をもたらす。ここでは③について電力変換や電力制御に利用される半導体について採り上げる。現在の半導体はSi(シリコン)であるが、SiC(シリコンカーバイド)やGaN(ガリウムナイトライド)半導体の開発がなされ、コンバーターとして徐々に浸透してきた。これらはシリコンに比較してバンドギャップが2~3倍、絶縁破壊電界が6~10倍、放熱に関係する熱伝導率が1.5~3倍で高温環境下でも性能が発揮するのが特徴である

因みに、ある電子機器の電力損失のうちスイッチオン20%、オフ時32%のオン・オフだけで52%が損失となる(残りは稼働時の損失)が、SiC半導体ではスイッチオフ損失15%に、稼働損失を入れてもトータル47%は削減できるとの報告がある。(ローム社カタログ)

 

今後、例えば自動車の半自動走行レベル2でもピコ秒単位でのオン・オフ切り替えがなされると半導体の発熱による能力低下問題から耐熱・熱伝導性の良い新規半導体に切り替えが進むものと推定される。但し、ウエハーの加工問題や価格問題もあることから、商品の電圧によっては、安価なSi基板の上にGaNを複層するなど種々の組み合わせも提案されている。化学、加工技術、半導体部品製造が一体となった技術開発が求められ日本の底チカラが活かされる時期到来となった。デンソー、東芝も参入してきた。

ウイスキーは数滴の加水で美味しくなる?

今回は紳士淑女が愛してやまないウイスキー、ブランデーについて。ウイスキーに水を数滴加えるとすると味が美味しくなるのは経験された人は多いと思われる。アルコール(エタノール)と水は分子構造が似ているので良く混合する。なので数滴といえども加水すれば水っぽくなる筈であるが、逆に美味しくなる理由が分からない。凡人は何故?と考える前に酔いしれるが、世の中には分子動力学によるシミュレーションでアルコールと水がどのようにウイスキーの中で存在しているかをコンピューターで計算した研究者がいる。(オリジナル文献スウエーデン・リンネ大B.C.G.Karlsson,R.Friedma Sci.Rep.,7 6489(2017) 、引用文献 現代化学201711月号)

分子動力学シミュレーションはコンピューター上の仮想空間にエタノールと水の分子を配置し、原子に働く力及びポテンシャルエネルギーを仮定しニュートンの運動方程式に従って分子の運動の軌跡を計算する。ウイスキー醸造後のエタノール濃度は55~65%であるが、瓶詰めの段階で加水され40%に調整される。研究者は27%のエタノール濃度の時にエタノールと水は瞬間的に何処に存在するのか計算し統計的に処理した結果、表面層にエタノールが濃く存在し(平均の4倍)、表面から内部に向かうにつれ水の濃度が高い結果となった。かつエタノールはCH3-CH2 –OHと表現されるが、液面の最表面ではCH3-CH2が並んでおり-OHは内側に向いていることを算出した。これに数滴の水を加えるとこの傾向は更に強くなることが計算で求められた。尚、醸造後のアルコール濃度55~65%では全く均一であることと様相が異なる。

スコッチウイスキーにはエタノールだけで無く其の他成分(例えば香り成分)も存在している。醸造時に生成する香り成分とエタノール、水との3元系について、同様に動力学シミュレーションをしたところ、この香り成分の特定の箇所がエタノールに積層して存在するが、数滴の加水で表面層のエタノール濃度が高くなると、この香り成分はエタノールから分離揮発して我々が香しいと感ずるメカニズムを明らかにした。

左党にとってなるほどと関心を持って頂けるか、硬水と軟水ではどう違うのか?日本のワイン作りは水で苦労したと聞くが、どのように工夫したのかなど話題は尽きない。

それなら歯科関係のあの材料はどのようになるだろうかと想像を逞しくするのも良いのかも。酔い知れる前に。

東京モーターショー。パワードライブはEVで決まりか?

東京モーターショウが開幕したので早速見学。往年の大混雑と様変わりでゆっくり見ることができた。中高年と小中学生の団体が多く、中間層のクルマ離れ対策として小中学生にクルマへの関心を持たせる意図も工業会にはあるのだろう。展示はEV(電気自動車)に注目が集まるだろうとの予想は良い意味で裏切られた。EV化は折り込み済みで関心はEV代替パワートレインとコネクト技術であった。

EV化が現実的な当面のパワートレインであることは間違いがない。

理由の一つは米国カリフォリニア州のZEV規制(ゼロエミッションヴィークル:排気ガスゼロ)合格車の割合が決められており、合格しない場合にはクレジットを先行メーカーから購入する必要がある。ハイブリッドは対象外扱いになったのでトヨタは巨額のクレジットをテスラモーターから購入したとの情報があり、一方、三菱、日産は購入必要性が少ないとのこと。両社はEV車を製造しているからである。

理由の2つ目はフランス、英国、中国もエンジン車廃止の政策を打ち出していることも影響は大きい。

しかしながら、自動車に関して目の肥えた日本ユーザーはクルマのパワートレインがエンジン廃止→即EVになると単純には考えていない。技術立国だけに種々の選択肢があり究極のパワートレインはEVではなさそうだと見ているからである。

今回の展示で最も注目されていたのがマツダのHCCIエンジンである。黒山の人だかり。

通常のガソリンエンジンが点火プラグでガソリンを着火爆発させてピストンを押すのに対してディーゼルエンジンは軽油を高圧圧縮して軽油の着火温度に達した時に爆発してピストンを押し下げる。この両方のプロセスしかないとの常識に対して、ガソリンを燃料としてディーゼルエンジンのように高圧圧縮点火させる離れ業をやってのけた。従来のガソリンの半分の濃度で駆動する。

一般に発電所で燃料を燃焼させ電気を取り出す効率は55%である。それに対して通常のエンジンでは30~40%。トヨタのル・マンレーシング用ハイブリッドエンジンでは50%まで改良されマツダの今回エンジンは恐らく発電所並の効率で走行することになろう。送電ロスが約6%なので、EVよりはマツダ新エンジン、トヨタハイブリッド用エンジンがトータルでは適していることになる。

一方、トヨタとメルセデスベンツは究極のエコカーはFCV(水素燃料電池車)であると考えている。両社はコンセプトカーを展示している。EVは発電所で発電して蓄電池に電気を溜めるのでEV増加につれて発電所増設が必要であるが、FCVはミニ発電所を装備しているようなものなので社会インフラ負担は少ない。FCVも蓄電池は必要であるが、トヨタでは全固体電池の開発をしている。水分や空気に触れると爆発燃焼するジエチルカーボネート電解液利用のリチウム電池を代替する計画はリチウム電池廃棄処理を考えると固体電池が好ましい。その一方でリチウムに代わるマグネシウム利用二次電池の基礎研究も進んでいる(東京理化大)

今回の展示から話題はそれるが水素の原料問題に触れてみよう。

以前はメタノール、LPGからクルマ搭載の分解装置で水素をとる考えがあったが、現在はオーストラリアの褐炭中にある水素を-283℃で液化して輸送する方法を川崎重工がプロジェクトを推進しており、岩谷は化学コンビナートでの副生成ガス利用プロジェクトを推進している。アンモニアからプラズマ処理で水素と窒素に分解する手法を中小企業が開発しているなど頼もしい。最近、水に光を照射して水素を得る研究が大阪大学から発表された。真嶋教授グループが黒リン、金ナノ粒子、チタン酸ランタンの3つの材料からなる可視光・近赤外光応答型光触媒を開発、水から水素の高効率生成に成功するなど水素社会に向けて着々と前進していることは期待をもって注目される。

パワードライブEVで決まりか? その答えはガソリン、水素は侮れない。

歯科材料シロップ重合とポリエチレンフィルム材料設計

観光地のお土産として景観・寺院・動物などミニチュアを透明樹脂で固化した文鎮や置物を子供のころ見た記憶がある。その時、どのようにして作るのか不思議だなぁとしか考えなかった。長じて樹脂業界にお世話になって成形といえば熱可塑性樹脂の射出、ブロー、押出・・・とひたすら汎用の成形及び材料の開発に従事してきた。

それが、歯科分野を知る機会が訪れたとき子供の頃の不思議さが氷解した。歯科業界の人には常識・旧聞・何が不思議?と思われるとあろうが、このブログ読者の中には小生と同じ経験の人もおり、多分ヘエ~と同感するあろうから紹介する。

アクリル樹脂は光線透過率92%以上の高透明樹脂である。自動車のテールランプはアクリル性であるのは、、後続車両の運転手が前走行車両のストップの赤を視認する時間が他の透明材料より短いからであると自動車ランプメーカーの技術者から聞いたことがある。自動車ランプメーカーでは視認時間コンマ何秒を競って商品開発をしていた。セイフティ機能の付いた現在のクルマでは笑い話になっているが、鮮鋭性とシークエンス方向指示搭載のクルマにとってアクリル樹脂は貴重な材料である。フロントのランプカバーはポリカーボネート樹脂であり、これは衝突時に破壊しにくいことが採用理由である。前述のお土産封止文鎮などに利用されるアクリルの分子量は10万前後であるが、強度と耐久性が要求される歯科材料の分子量は120万~150万の超高分子量アクリル樹脂が基本となっている。非常に強度が高く、水族館のパネルにも利用されている程である。但し、これを溶融させても粘度が極めて高いので歯科の精密な型に入れては成形できない。そこで液体のアクリルモノマー(アクリルポリマーの出発原料)と混合すると、超高分子量アクリル樹脂は膨潤し、シロップ状態になって注型することができる。注型した後は加温してアクリルモノマーをラジカル重合させる仕組みである。後で重合したアクリルの分子量は低分子量なので、最終的には超高分子アクリルと低分子アクリルが組み合わされた材料となる。分子量分布をGPC(ゲルパーミヤカラム)法で測定すると見事に高分子量のピークと低分子量にピークを有するツインピークとなっている。この材料が長らく適用されてきたが、最近は中間の分子量のアクリル樹脂に強化材を複合したハイブリッドレジンなるものが出現している。こちらの分子量分布は1ピークである。

一方、1980年ごろポリエチレンメーカーが懸命に開発していた材料と成形法がある。ショッピングバッグやレジ袋に利用されている極薄フィルムである。薄肉にして強靱なフィルムは高強度の超高分子量のポリエチレンと、それだけではフィルム成形できないので、低分子量ポリエチレン半分からなる分子構造をしている。アクリル歯科材料と違ってシロップにはならないので、独自の技術開発をした。最終的には超高分子量による強靱性を確保しつつ成形が可能という点では類似している。分子量分布を測定するとツインピークとなっている。ポリエチレンの開発者と歯科材料の開発者が相互交流をしていれば、早期に新規材料開発ができたのではないかとも、今だから言える。